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Introduction
β2-adrenergic receptor (β2-AR) agonist is administered in a 
variety of clinical situations[1–5] mostly for its bronchodilating 
effects.  Furthermore, the regulation of β2-AR agonist on the 
production of inflammatory cytokines has been recognized.  
For example, it was shown that, salbutamol and albuterol, 
agonists of β2-AR, could inhibit tumor necrosis factor (TNF)-α 
production by human mononuclear cells[6, 7], in addition, 
salbutamol exerts immunosuppressive effects through down-
regulation of co-stimulatory molecules, inter-cellular adhe-
sion molecule 1 (ICAM-1), CD40 and CD14 on monocytes[7], 
endocytosis of the TLR4 complex was pertinent to anti-inflam-
matory effects[8].  Whether β2-AR stimulation mediated anti-

inflammatory effects in monocytes depending on the endo-
cytosis or redistribution of TLRs is not clear.  Therefore, it is 
necessary to make clear the exact target of β2-AR stimulation 
during the process of anti-inflammation.

Upon agonist binding, β-arrestins1/2 is recruited to the 
plasma membrane and interacts directly with two structural 
components of clathrin-coated pits, clathrin and AP-2, which 
promote the endocytosis of β2-AR into early endosomes via 
clathrin-coated vesicles[9–10].  Moreover, TLR4 was also endo-
cytosed by a dynamin and clathrin dependent mechanism and 
colocalized with lipopolysaccharide (LPS) on early sorting 
endosomes[11].  Therefore, we hypothesized that β2-AR stimu-
lation mediated β-arrestins’ translocation was associated with 
redistribution of TLRs.

Lipopolysaccharide (LPS)-induced inflammation in THP-1 
cells is a model to study TLRs[12].  As a receptor of LPS, TLRs 
play an important role during LPS-induced inflammation[13].  
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Recent studies have reported that β2-adrenergic agonist exert 
its “anti-inflammatory” effects in monocytic cells through 
the IκB/NF-κB pathway[6].  On the other hand, IκB/NF-κB is 
downstream signaling of TLR, which plays a pivotal role in 
regulating inflammatory gene expression and LPS-induced 
inflammation[13].  The exact relationship between β2-AR-
mediated anti-inflammatory effects and TLR signaling path-
way remained to be elucidated in monocytes.

In the present study, we aimed to explore the underly-
ing mechanism of the anti-inflammatory effects mediated by 
β2-AR stimulation in THP-1 cells.  We first investigated if LPS-
induced cytokines could be suppressed by fenoterol via ELISA 
assay.  To confirm fenoterol’ anti-inflammatory effect, down-
regulated LPS-induced membrane-bound TLR4/CD14 com-
plex and CD14 level in THP-1 cells on stimulation of β2-AR 
were verified by flow cytometry.  Then, we discovered that the 
total level of CD14 and TLR4 was not significantly changed 
by Western blotting, but interestingly, redistribution of CD14 
and TLR4/CD14 complex mediated by β2-AR stimulation was 
found by confocal analysis.  Lastly, anti-inflammatory effects 
and redistribution of CD14 and TLR4/CD14 complex medi-
ated by β2-AR stimulation were abolished by siRNA-mediated 
knockdown of β-arrestin-2, which might play an important 
role in crosstalk of β2-AR and TLR[14].

Materials and methods
Cell culture
The human monocytic cell line THP-1 (obtained from the 
cell center of Peking Union Medical College) was cultured in 
RPMI-1640 medium (Sigma Chemical Co, St Louis, MO, USA) 
supplemented with 10% fetal bovine serum (FBS), 100 U/mL 
penicillin, and 100 g/mL streptomycin at 37 °C in 5% CO2 in a 
humidified incubator.  Cells were centrifuged and resuspended 
with fresh medium at 106/mL and incubated for another 
24 h before use.  The cells were washed and distributed into 
sterile microtiter plates at 106/mL in RPMI-1640 medium 
containing 2% FBS stimulated with 0.1 µg/mL of Escherichia 
coli 0111:B4 LPS (Sigma) for 24 h (unless indicated other-
wise) at 37 °C in the presence or absence of β2-AR agonists 
(fenoterol) and antagonists (ICI 118551) (both from Sigma).  

Downregulation (siRNA) of the β-arrestin-2
Cells were split at least 24 h prior to transfection and trans-
fected with siRNA designed against β-arrestin-2 or control 
siRNA using the Oligofectamine™ transfection reagent (Invit-
rogen Life Technologies, Carlsbad, CA) according to the opti-
mized procedure recommended by the producer as described 
elsewhere[15].  The siRNA sequence targeting β-arrestin-2 is 5’ 
AAGGACCGCAAAGUGUUUGUG 3’ (Shanghai GeneChem 
Co, Ltd, Shanghai,China).  All assays were performed 72 h 
following transfection of siRNA.  The inhibitory efficiency of 
siRNA probes was assessed by measuring knockdown of the 
β-arrestin-2 protein by Western blotting analysis.

ELISA assay
Concentrations of interleukin 8 (IL-8) and tumor necrosis fac-

tor α (TNF-α) from cell supernatants were determined by use 
of an ELISA system (R&D Systems, Minneapolis, MN) accord-
ing to the manufacturer.  The detection limits of ELISA for IL-8 
and TNF-α were 10 pg/mL.

Flow cytometry 
The expression of CD14 and TLR4/CD14 complex in THP-1 
cells was determined by flow cytometry.  After LPS stimula-
tion in the presence or absence of fenoterol, the cells (106/
sample) were washed once with PBS, then incubated at 4 °C 
for 30 min with a combination of anti-CD14 FITC-conjugated 
(clone 61D3, 10 g/mL; eBioscience) and anti-TLR4 PE-conju-
gated antibodies (clone HTA125, 10 g/mL; eBioscience).  After 
washing, cells were analyzed by use of a FACS Calibur (Bec-
ton Dickinson Biosciences, San José, CA, USA), and data were 
analyzed by use of the CELL QUEST Program (Becton Dickin-
son).

Western blotting and immunoprecipitation
After treatment, THP-1 cells were lysed in 10 mmol/L HEPES, 
pH 7.9, 0.1 mmol/L EDTA, 0.1 mmol/L EGTA, 1 mmol/L 
dithiothreitol, and 1 mmol/L phenylmethyl-sulfonylfuoride.  
Cell membrane proteins were prepared using the Plasma 
Membrane Protein Extraction Kit (Applygen Technologies 
Inc., Beijing, China).  Cell membrane protein or cytoplasmic 
protein extracts, 60−90 µg were separated by 10% SDS-PAGE 
and electrotransferred onto anti-trocellulose membrane (Bio-
Rad, Hercules, CA, USA).  TLR4, CD14, and β-arrestin-2 were 
detected with use of mouse monoclonal anti-human TLR4, 
CD14, and β-arrestin-2 antibody (Santa Cruz Biotechnology, 
Santa Cruz, CA), goat anti-mouse horseradish peroxidase-
conjugated secondary antibody (Zhong Shan Jin Qiao Co, 
China), and enhanced chemiluminescence (Pierce Biotech-
nology).  Band intensities were determined using computer 
program Image-J and were presented as the mean±SEM of the 
x-fold change over the respective control that was arbitrarily 
defined.  For immunoprecipitation, 100 µg of membrane pro-
tein was incubated with 20 µL protein G plus-agarose (Santa 
Cruz Biotechnology, Santa Cruz, CA, USA) pre-equilibrated in 
lysis buffer and 10 µL of polyclonal antibodies for 4 h at 4 °C.  
Samples were then centrifuged for 10 s, and the pellets were 
washed three times with 1 mL of lysis buffer.  Bound proteins 
were eluted by the addition of 15 µL of SDS sample buffer and 
boiling for 5 min and then analyzed by SDS-PAGE and immu-
noblotting.

Confocal analysis
A standard immunocytoplasmic staining protocol was used[16].  
Briefly, after LPS stimulation in the presence or absence of 
fenoterol and siRNA-mediated knockdown of β-arrestin-2, 
THP-1 cells were cultured in a chamber slide (Zhong Shan Jin 
Qiao Co, China) for 20 min, then fixed with ice-cold acetone 
for 20 min and stained with PE-conjugated monoclonal anti-
bodies for mouse anti-human TLR4 (HTA125) and FITC-
conjugated monoclonal antibodies for mouse anti-human 
CD14 (61D3) for 24 h at room temperature, then washed with 



1524

www.nature.com/aps
Wang W et al

Acta Pharmacologica Sinica

npg

PBS twice and stained with Hoechst-33342 (Sigma-Aldrich) for 
15 min to visualize the nuclei, washed with PBS twice, then 
mounted with use of Antifadent Mountant Solutions (Zhong 
Shan Jin Qiao Co, China) and viewed under a confocal laser 
scanning microscope (LSM 510 META, Zeiss, Germany).

Statistical analysis
Experiments were repeated at least three times.  Data are 
presented as mean±SEM.  The statistical significance of the 
differences between the means of the groups was determined 
by one-way ANOVA followed by Bonferroni post-hoc test.  P 
values of <0.05 were considered statistically significant.

Results
Fenoterol inhibits LPS-stimulated IL-8, TNF-α release from THP-1 
cells
The concentration of IL-8 increased about 20-fold on stimu-
lation with LPS (0.1 µg/mL) in THP-1 cells.  The elevated 
concentration of IL-8 was significantly decreased by pre-
incubation with up to 10-6 mol/L fenoterol.  Furthermore, this 

effect was largely attenuated in the presence of 10-6 mol/L 
ICI118551, the antagonist of β2-AR (Figure 1A).  Similar results 
were found for TNF-α (Figure 1B).  

Fenoterol down-regulates membrane-bound TLR4/CD14 
complex and CD14 in THP-1 cells
After LPS (0.1 µg/mL) stimulation for 24 h, the effect of fenot-
erol (10-6 mol/L) on change of the membrane-bound TLR4/
CD14 complex and CD14 levels in THP-1 cells was examined 
by flow cytometry.  Although LPS-induced TLR4 expression 
was not significantly changed with β2-AR stimulation (data 
not shown), the membrane-bound TLR4/CD14 complex and 
CD14 levels in THP-1 cells were significantly decreased on 
incubation with fenoterol, pre-incubation with ICI118551 for 
30 min abolished the effect of down-regulation of TLR4/CD14 
complex and CD14 mediated by fenoterol (Figure 2A).  Similar 
results were found by Western blotting (Figure 2B).

Fenoterol enhances redistribution of LPS-stimulated TLR4/CD14 
complex and increases membrane-bound β-arrestin-2 expression 
in THP-1 cells
The total protein expression of CD14 and TLR4 in THP-1 cells 
was not significantly changed by treatment with fenoterol (10-6 
mol/L) or LPS (0.1 µg/mL) (Figure 3Aa, 3Ad).  However, con-
focal microscopy revealed that the membrane-bound TLR4/
CD14 complex was reduced in level with pre-incubation of 
fenoterol (10-6 mol/L) (Figure 3Bb) in LPS-stimulated THP-1 
cells (Figure 3Ba) and redistribution of TLR4/CD14 com-
plex under stimulation with β2-AR was abolished with pre-
incubation of ICI118551 for 30 min (Figure 3Bc).  Meanwhile, 
membrane-bound β-arrestin-2 was increased by treatment 
with fenoterol (10-6 mol/L) for 3 min (Figure 3C).

Silencing β-arrestin-2 abolished the anti-inflammatory effects 
and redistribution of LPS-induced TLR4/CD14 complex 
stimulated by β2-AR
The siRNA used almost abrogated β-arrestin-2 expres-
sion in THP-1 cells (Figure 4A).  To determine whether the 
β-arrestin-2 siRNA could affect anti-inflammatory effects and 
redistribution of LPS-stimulated TLR4/CD14 complex on 
stimulation with β2-AR, afer transfection with siRNA designed 
against β-arrestin-2 or control siRNA, THP-1 cells were stimu-
lated with LPS in the presence or absence of fenoterol as 
described before.  As shown in (Figure 4B, 4C), anti-inflamma-
tory effects and redistribution of CD14 and TLR4/CD14 com-
plex mediated by β2-AR stimulation were abolished by siRNA-
mediated knockdown of β-arrestin-2, while not abolished by 
control siRNA (data not shown).

Discussion
LPS-induced inflammatory response was abolished in mice 
deficient in MyD88–/–, an important downstream signaling 
molecule of TLRs, suggesting that TLRs play a central role 
in the pathogenic microorganism-mediated inflammatory 
response[13, 17].  On the other hand, we noticed that β2-AR sig-
naling exerted anti-inflammatory effect[6, 7].  Therefore, further 

Figure 1.  Concentration of LPS-stimulated IL-8 and TNF-α in cell 
supernatants determined by ELISA in the presence or absence of fenoterol 
(lg mol/L) and ICI118551 (10-6 mol/L).  (A) Inhibitory effect of fenoterol 
on IL-8 production from THP-1 cells stimulated for 24 h with LPS (0.1  
μg/mL). (B) Inhibitory effect of fenoterol on TNF-α production from THP-1 
cells stimulated for 24 h with LPS (0.1 μg/mL).  Data are presented as 
mean±SEM.  bP<0.05, cP<0.01.
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study is needed to elucidate the relationship between β2-AR-
mediated anti-inflammatory effects and TLR signaling path-
way.

To understand the mechanism of β2-AR-mediated TLR regu-
lation, TLR binding structure and its co-factors first need to 
be considered.  All TLRs are type I transmembrane receptors, 
characteristic of a highly variable extracellular region, includ-
ing a leucine-rich repeat domain involved in ligand binding 

and an intracellular tail containing a highly conserved region, 
the Toll/Interleukin-1 Receptor (TIR) homology domain, 
which mediates interaction between TLRs and downstream 
signaling molecules[13].  Activation of TLR4 is initiated as fol-
lows: the binding of the LPS binding protein (LBP)/LPS com-
plex to membrane CD14 (mCD14), then binding and forming 
the TLR4/CD14 complex and activating TLR4, which activates 
signal transduction pathways and induces inflammatory 

Figure 2.  Expression of membrane-bound TLR4, CD14, 
and TLR4/CD14 complex in THP-1 cells by two-staining 
flow cytometry method (PE-TLR4 and FITC-CD14) and 
immunoprecipitation and immunoblotting.  (A) (a) 
Expression of TLR4, CD14 and TLR4/CD14 complex  
in THP-1 cells stimulated by LPS (0.1 μg/mL) for 24 h 
(representative experiment).  (b) Fenoterol (10-6 mol/L) 
for 24 h down-regulates LPS-stimulated membrane-
bound CD14 and TLR4/CD14 complex in THP-1 cells 
(representative experiment).  (c) Pre-incubation of 
ICI118551 for 30 min abolished fenoterol-induced 
down-regulation of membrane-bound CD14 and TLR4/
CD14 complex (representative experiment).  (d) Down-
regulating effect of fenoterol (10-6 mol/L) for 24 h on 
LPS-stimulated membrane-bound CD14  in THP-1 cells. 
Data are presented as mean±SEM.  bP<0.05 vs LPS 
or LPS+Fen+ICI118551 group. (e) Down-regulating 
effect of 24 h fenoterol (10-6 moL/L) on LPS-stimulated 
membrane-bound TLR4/CD14 complex in THP-1 
cells.  Data are presented as mean±SEM.  bP<0.05 
vs LPS or LPS+Fen+ICI118551 group.  (B) (a) Down-
regulating effect of fenoterol (10-6 moL/L) for 24 h on 
LPS-stimulated membrane-bound CD14 in THP-1 cells 
by Western blotting. Data are presented as mean±SEM. 
bP<0.05 vs LPS or LPS+Fen+ICI118551 group.  (b) 
Down-regulating effect of fenoterol (10-6 mol/L) for 
24 h on LPS-stimulated membrane-bound TLR4/CD14 
complex in THP-1 cells by immunoprecipitation and 
immunoblotting.  Data are presented as mean±SEM. 
bP<0.05 vs LPS or LPS+Fen+ICI118551 group.
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gene expression[13].  Thus, we speculated that a change in the 
membrane-bound TLR4/CD14 complex level might affect the 
activation of TLR4.  Furthermore, in the present study, we 
identified that reduced inflammatory response mediated by 
β2-AR stimulation was related to the change of membrane-
bound TLR4/CD14 complex (Figure 2) but not total protein 
expression of TLR4 in monocytes (Figure 3A).  Interestingly, 
despite no significant change in total protein expression of 
TLR4 with β2-AR stimulation, confocal microscopy revealed 
redistribution of the TLR4/CD14 complex (Figure 3B).  A 
previous study showed that human corneal epithelial cells 
express TLR2 and TLR4 intracellularly but not at the cell sur-

face and fails to respond to LPS even on artificial translocation 
of LPS[18].  Thus, membrane-bound TLRs play a central role 
in LPS-induced inflammatory response, and β2-AR mediated 
reduction of membrane-bound TLRs was responsible for the 
reduced inflammatory response in monocytes.

Whether the β2-AR-mediated anti-inflammatory effect 
depends on the inhibition of the receptor level or down-
stream signaling of TLRs is still in debate.  There have been 
some reports that the anti-inflammatory effect of β-receptor 
activation was associated with a change in content of IκB/
NF-κB, extracellular signal-regulated kinase 1/2 (ERK1/2) 
or p38[6, 19], whether these changes were the direct effect of 

Figure 3.  Expression of CD14, TLR4, and membrane-bound β-arrestin-2 in the presence or absence of fenoterol by Western blotting.  Distribution of 
LPS-stimulated TLR4/CD14 complex on stimulation with β2-AR examined on confocal analysis.  (A) (a,c) Representative Western blotting and analysis 
of CD14 and GAPDH protein expression; (A) (b,d) Representative Western blotting and analysis of TLR4 and GAPDH expression.  GAPDH was used as 
an internal loading control.  (B) (a) Confocal analysis of LPS-stimulated TLR4/CD14 complex in THP-1 cells; (b) Confocal analysis of redistribution of 
LPS-stimulated TLR4/CD14 complex from THP-1 cells under stimulation with β2-AR.  (c) Redistribution of LPS-stimulated TLR4/CD14 complex under 
stimulation of β2-AR with pre-incubation of ICI118551 in THP-1 cells.  (C) Expression of membrane-bound β-arrestin-2 in the presence or absence of 
fenoterol for 3 min, LPS and ICI118551 by Western blotting analysis (representative experiment).
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β-receptor stimulation or resulted from down-regulation of 
TLRs is still unknown.  A recent study revealed that β2-AR 
agonist exerts its anti-inflammatory effect through inhibiting 
the expression of membrane-bound CD14, a co-factor of TLRs, 
on monocytes [7].  The regulation of TLRs might be a poten-
tial target of the β2-AR agonist.  Our results further demon-
strated that the reduced level of membrane-bound TLRs was 
responsible for the anti-inflammatory effect of β2-AR agonist 
(Figure 2).  As well, the decreased activation of NF-κB sig-
naling was attributed to the down-regulation of membrane-
bound TLRs.  Whether the signaling of TLRs is a specific 
pathway for the β2-AR-mediated anti-inflammatory effect still 
needs to be elucidated.

 Upon agonist binding, β-arrestins1/2 is recruited to the 
plasma membrane and mediates desensitization and internal-
ization of G-protein-coupled receptor (GPCR)[20].  However, 
β-arrestins have been considered as novel non-G protein-
dependent signaling molecules and play functional roles in 
the regulation of a variety of signaling pathways and in the 
mediation of cross-talk between receptors[21–23].  For example, 
β-arrestin-2-dependent stabilization of cytosolic IκBα and 
inhibition of NF-κB activation following LPS stimulation are 
essential for rapid and sufficient production of NO in response 
to microbial attack[14].  Moreover, there is accumulating evi-
dence that β-arrestin-2, which is expressed abundantly in the 
spleen, is functionally involved in some important immune 
responses, such as regulation of lymphocyte chemotaxis and 

homing[24, 25].  In the present study we used RNA interference 
against β-arrestin-2 to test its role in anti-inflammatory effects 
stimulated by β2-AR.  The specificity and efficiency of siRNA 
against β-arrestin-2 was demonstrated by Western blotting 
(Figure 4A).  The translocation of β-arrestins1/2 to the plasma 
membrane was reported to interact directly with two struc-
tural components of clathrin-coated pits, clathrin and AP-2, 
promoting the endocytosis of β2-AR into early endosomes via 
clathrin-coated vesicles[9, 10].  Moreover, TLR4 was also endo-
cytosed by a dynamin and clathrin dependent mechanism and 
colocalized with LPS into early/sorting endosomes[11].  There-
fore, we hypothesized that β-arrestins’ translocation to the cell 
surface was associated with redistribution of TLRs on stimu-
lation of β2-AR.  Meanwhile, fenoterol increased membrane-
bound β-arrestin-2 expression, suggesting that β-arrestin-2 
translocated to the cell surface on stimulation of β2-AR in 
THP-1 cells (Figure 3C).  Our study indicated that depletion 
of β-arrestin-2 abolished redistribution of CD14 and TLR4/
CD14 complex mediated by β2-AR activation (Figure 4B), 
suggesting that β-arrestin-2’ translocation and β-arrestin-2/
clathrin-dependent redistribution of TLRs was required for 
anti-inflammatory effects stimulated by β2-AR.  Further study 
needs to clarify β-arrestin-2/clathrin mediated redistribution 
of TLRs on stimulation of β2-AR.

Taken together, we provided evidence that β2-AR agonist 
exerts anti-inflammatory effects by down-regulating mem-
brane-bound TLRs through β-arrestin-2.  Down-regulation 

Figure 4.  Ef fects of β-arrestin-2’ down-
regulation on the anti-inflammation and 
redistribution of LPS-stimulated TLR4/CD14 
complex stimulated by β2-AR.  (A) Effect of 
β-arrestin-2 small interfering RNA (siRNA) for 
72 h on the expression of the β-arrestin-2 
protein.  Data are presented as mean±SEM. 
bP<0.05 vs control or scramble.  GAPDH was 
used as an internal loading control.  (B) After 
transfection with siRNA designed against 
β-arrestin-2 for 72 h, confocal analysis of 
LPS-stimulated TLR4/CD14 complex in THP-1 
cells (a); Confocal analysis of redistribution of 
LPS-stimulated TLR4/CD14 complex in THP-1 
cells under stimulation with β2-AR (b). (C) 
After transfection with siRNA designed aga 
inst β-arrestin-2 for 72 h, THP-1 cells were 
stimulated with LPS for 24 h in the presence 
or absence of fenoterol, anti-inflammatory 
effects stimulated by β2-AR was abolished 
when β-arrest in -2 was knocked down. 
bP<0.05 vs LPS 0.1 μg/mL.
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of β-arrestin-2 significantly attenuates the anti-inflammatory 
effects mediated by fenoterol, suggesting that β-arrestin-2 
is beneficial to protecting organism against invading patho-
gens.  This finding has implications not only with regard to 
our understanding of molecular mechanism for the β2-AR 
agonists’ anti-inflammatory effects but also for the develop-
ment of therapeutic agents targeting these pathways, which 
may be helpful for treatment of acute and chronic inflamma-
tory diseases.
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